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ABSTRACT

This paper was stimulated by numerous studies of manned
space experiments where there seemed need for a treatment of the
"weightless environment" that was complete, physically oriented,
and emphasizing analytical rather than numerical results.

The mathematical problem, which has been solved before, is
to describe the motion of a mass point as seen from coordinates,
local vertical or inertial, fixed in an orbiting spacecraft. This
problem is exactly soluble, for small distances (kilometers), includ-
ing gravity gradient and a constant drag acceleration. The apparent

. forces are described as they would be perceived by an observer on

the spacecraft. The resulting trajectories are shown to be the sum
of three elementary trajectories, each of which is geometrically
simple. Combining analysis and geometry, it is easy to visualize
most space experiment or sub-satellite problems intuitively before
confirming with numerical analysis. ’

In low orbit, weightlessness is a good description for
times approaching a_minute. Gravitational accelerations on objects
differ by about 10'7g per meter of separation, and motion in response
to this difference should be guite clear in a few minutes and large
in an orbit (~90 min.). Drag acceleration, significant for Skylab
(10-8g), can dominate (10~3g) low altitude shuttle flights near the
solar maximum. A capability may be desirable for low thrust systems
to compensate for drag.

When drag is small, the local vertical orientation appears
superior to the inertial one for zero-G space laboratories. Since
particles along the track line co-orbit precisely, the local vertical
laboratory has many sites with equivalent acceleration environments
and can support more operations at once. It is ¢learly desirable
that shuttle or station laboratory areas include the center of
gravity and for local vertical, the track line.



(=

Some practical problems are insensitive to these
accelerations. For example, astronaut work aids fall in two
classes. The first includes rugged devices to close the force
system between astronaut and work piece. The second includes
devices to prevent objects from drifting away due to the small
forces. Sophisticated analysis is unnecessary.

For sub-satellites, the elementary trajectories
permit a complete enumeration of possible bound orbits. Three
distinct classes are described; with this flexibility, the
capability for supporting such satellites from a shuttle seems
clearly established.
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1.0 INTRODUCTION

This paper reviews the motion of free objects within
or near spacecraft in circular orbit. Understanding this area
is important in dealing with zero-g experiments; it is also
important in dealing with subsatellites which might be deployed
by a shuttle sortie mission and later retrieved.

The text describes the forces -- gravity and drag are
included -- and typical motions. The general solution is shown
to be the sum of three geometrically simple trajectories. These
are described as seen by observers on either inertial or local
vertical space vehicles. In the appendices, the equations of
motion are derived and the solution worked out. The text con-
cludes with some applications. :

The mathematical problem apparently arose first in
studies of rendezvous. Roberson reports that the closed-form
solutions for small displacements of the second body (tens of
miles) appear in "several" of the references reviewed in his

(1)

1963 review paper. Englar presents an "irreducibly simple”

derivation in Reference 2. There have been a number of apgli—
(

) (4)

cations to specific aspects of both the zero-g experiment

and the subsatellite problem.(s)

The present paper was stimulated by numerous experi-
ments program studies where there seemed need for a treatment
of the "weightless environment" that was complete, physically
oriented, and that emphasized analytical rather than numerical
results. Section two describes the forces, with emphasis on the
assumptions and limitations of the treatment. Section three
shows the solutions for particle trajectories. Representa-
tion with the three elementary trajectories makes geometrical
interpretation easy. The applications in section four comprise
a series of notes on a variety of problems stimulated by the
analysis.



The treatment is intended to be instructive and

complete. A compact, vector analytical geometrical formalism
is employed.

2.0 THE FORCES

2.1 General

To understand the motion of a small body near a
spacecraft, we must describe the larger forces and typical
resulting motions. This gives an intuitive base upon which
more precise work can be done. These forces and motions are
guite different from those we are familiar with on Earth and
study in elementary physics. The objective is to describe the
orbital phenomena at the level of detail corresponding to knowledge
of the downward force of gravity, friction, and of low speed, near-
parabolic trajectories. In the remainder of this section, the
forces and equations of motion are described.

2.2 Gravity in Free Fall

A space vehicle spends most of its time in free
fall, with the Newtonian acceleration,

R(GM)

R = -
3
R|

(1)

(Capital letters are used for vectors and linear
operators, with the single exception of the gravitational
parameter (GM). R is the radius from the center of the Earth.)

An observer on this vehicle measuring a test object
is unable to measure this gross acceleration. He and the
objects fall together. In the simple case, the vehicle is
inertially oriented; the axes are at rest relative to the
stars. Then, provided attitude motions and vibrations are
small enough, the observer will detect small accelerations
depending on the displacement of the test object from the
center of gravity (C.G.). These are in part due to gravity
gradient and can be calculated by expanding (1) in Taylor
series. If the C.G. is at the vector distance D from_the
earth, and the object is at Z = (R-D), then to first order in

|zl/1o},



(z-D)
+ 3p =2 L1, (2)
D 2

D (GM) + (GM)

R = -
3 3
D] D]
. With the large, first term unobservable, the remain-
der, Z, corresponds to a restoring force proportional to Z and
a divergent force in the radial direction, proportional to the
radial component of Z.

EARTH

This is particularly clear in matrix notation.
Consider the simplest case, that of a vehicle in a linear
orbit, falling radially towards the Earth. A sounding
rocket trajectory is a good example, an Apollo translunar
trajectory a less precise example. ChooOse the coordinate
frame (&,n,tz) with £ radial. The observable acceleration of
of a test mass at a point Z, due to gravity, is:

. 2 0 0
z = lo-1 0]z (3)
Ip["\0 0 -1

For segments of the linear orbit where D is reasonably
constant this is a complete. equation of motion; further, it
separates and the solutions are hyperbolic functions in § and



trigonometric ones in n and ¢.* The solutions show that there
should be no recollision problem for objects jettisioned from
a sounding rocket, for instance. The equations become somewhat
more complicated in circular orbit. The matrix (3), however,
always represents the instantaneous acceleration field

due to gravity gradient.

2.3 "Inertially Oriented" Space Station

A space vehicle in circular orbit travels at an

. . . 2 :
angular velocity w. The centripetal acceleration, —w D, 1s
supplied by gravity, so

’_I(Gbl% =w? (4)
D

For an inertially oriented station, the axes are fixed
relative to the stars. (¢, n, 2) is a right handed system such that
at zero time ¢ lies along the radius and n along the positive velocity
vector or track. The letter z distinguishes this case from

£(o)
[

n{o)

z (o)

;,,,,,_;ﬂﬂ-""'*

\

, EARTH

*Let GM/ |DP-= a: then .
£(t) = £(0) cosh (Y2at) + SEL0) cinh (VZot)

o

n(t) n(0) cos (at) + ﬂéﬂl sin (at)

z(0)
o,

]

sin (at)

z(t) z(0) cos (at) +



the last and points to the orbital pole. At time zero, the
observable gravity forces are given by equation (3), with the
substitution (4):

2 0 0
2(0) = w?] 0 -1 0 |z(0) (5)
0 0 -1

At time t, the space station has moved wt around the Earth.
To the observer within, it is the force field which rotates.
Define A(wt): the operator

coswt =sinuwt 0
sinwt +coswt 0 (6)
0 0 1
which rotates a vector counter clock&ise in the orbital plane

by (wt). Then the acceleration of a test mass at Z, observed
in the inertial station at time t, is:

2 0. 0
2(t) = w2 Awt) [0 -1 0 la(-wt) z(E), (7)
0 0 -1

where the standard method of transforming an operator has

been applied.* "Equation (7) can be read from right to left as:
take the measurement (&, n, z) of position, Z; transform to
the instantaneous local vertical coordinate system; apply
equation (5); go back to inertial coordinates..

What (7) says, again, is that there is a generalized
"Hookes law" force on a particle, divergent in the radial
direction but restoring in the tangential plane. This force
describes all gravitational deviations of particle motion from
a straight line, Additional terms, F/m, can be added, to
account for other forces. Drag will be covered below.

The accelerations are small. The magnitude of w2 in

*(7) is derived in Appendix A. Note that there are
no Coriolis or centrifugal terms; Z is an inertial system with
a rotating acceleration field.



low orbit is 1.3 x 10—6 per second squared.* An observer on

such a laboratory will measure accelerations of ~ 10_6 m/s2
for every meter of displacement from the laboratory C.G.

This is lO"7 the gravitational acceleration at the Earth's
surface.

Even with these small accelerations, a particle
starting from rest can move substantlally in a few minutes.
To order of magnltude, the distance s is,

s=3at” oz [(1 or 2)w2|Z|]t2'\: (wt)?]z]. (8)
If the station moves one radian along its orbit
(wt = 1), ~ 15 min of time, the test object can move a distance
comparable to its initial separation from the C.G.

2.4 "Local Vertical” Space Station

The local vertical station rotates to keep a constant
orientation relative to radius and track. Forces like gravity
and drag have constant direction and are more simply described.
On the other hand, centrifugal and Coriolis effects are intro-
duced and are of comparable or larger size.

A measurement of position in local vertical coordi-
nates (x,y,z) is labelled V. At time zero, the coordinates
coincide with the inertial set (&, n, z). Thereafter, x
remains the outward radial and y the positive track. z, of
course, remains the pole of the orbit.

If, as in the figure, V is a constant local-vertical
vector, the corresponding inertial vector, Z, is rotating counter
clockwise, Thus,

Z = A(wt)V and conversely, V = A(-wt)3Z. (9)

*Values of wz are tabulated versus altitude for Earth
and Moon in Appendix B. Approximately the same accelerations
will be observed for low orbits around any planet, since for
a near surface orbit around a planet of radius r,

2

w" o= GM/r3 n % mpG, dependent only on planetary density, p.

For the Moon at 100 km altitude, wz = .79 x 10-"6 per (second)2



X{o)

ylo}

x(t)

y(t)

Considering the motion of free particles, since the
Observer is rotating, he will see most straight-line motions
as curvilinear. Coriolis and centrifugal forces are defined
to 'describe' what is in fact an unfortunate choice of labora-
tory conditions.*

The accelerations - derived more carefully in
Appendix A-are

100
w2 010}V , the centrifugal component, and
000

010
2w |-100|V , the velocity dependent Coriolis term.

000

*These forces on a free particle are said to be
"fictitious"; they can be made to disappear by giving the
‘observer a counter-rotating chair. When spacecraft walls
constrain the particle to move with the coordinate system,
real forces must be exerted to do so.



The local vertical equations of motion for a free
particle then include the gravity gradient, (5), added to these,
and any additional forces, F/m.

. ,[30 0 oto), o
V = 0°{00 O}V + 24 {-100}V + £

00- 000 m (10)

Note that the centrifugal component has cancelled the
restoring force in track. This suggests that for low accelera-
tion space laboratories, where a number of zero-G experiments
are to be performed, the local vertical orientation is better
than the inertial. There are more equivalent low acceleration
sites.*

2.5 Drag

Atmospheric drag is the next significant force (ignor-
ing spacecraft motions). At low altitudes, it is larger than
gravity gradient. Appendix B includes a plot of atmospheric
density versus altitude and solar activity, plus the conventional
expressions for drag in terms of spacecraft velocity and drag
coefficients. Drag varies with time; it can vary by a factor of
2-3 around an orbit, being strongest shortly after orbital noon.
At four or five hundred kilometer altitudes, drag can be a
hundred times more severe at times of intense solar activity
near solar maximum than it is at solar minimum.

_ For simplicity drag is modelled as a constant
acceleration in the positive track direction, **

0
F/m = d) . (11)
0

i

This is the correct sign for the motion of particles
within the station; it is the spacecraft, not the particles, which
is being dragged. For sub-satellites, the sign may be plus or
minus depending on the relative drag coefficients of parent and
daughter vehicles.

*Coriolis accelerations can be large if the specimens
move. This can be remedied by mounting sensitive experiments
on inertial tables which counter-rotate at orbital rate.

**Solutions in the appendix are carried out for a
general in-plane acceleration (2,d4,0).



For Skylab, drag acceleration will be about 10-8g

(see Appendix B; Skylab flies near solar minimum at an altitude
near 435km.), Drag is small relative to gradient. For the

shuttle, drag accelerations can range from 10_89 near space

station altitude (500km) to nearly 10 5g-at 100 nautical miles.
Early shuttles will fly near solar maximum. The accelerations
are very sensitive to spacecraft attitude, but can be typically
larger than gravity gradient.

2.6 Other Forces

A number of other factors affect the motion of particles.
Light pressure and higher terms in the Earth's field are believed
the next external factors in size. They have smaller effects than
the variation in drag and spacecraft motion, which already limit
the accuracy of the treatment.

(a) Light pressure. Light pressure is smaller than gravity gradient
forces, but can be comparable with drag. The momentum of a
photon is E/C, the energy/speed of light. For perfect reflec-
tion, twice this momentum is imparted.

, 2
. power density 1400 w/m -5 2
light pressure ~ 2 Speed of Tight nvo2 3x108 /e v 10 T N/m (12)

Near Skylab altitudes, for solar minimum when drag is weak,

the drag pressure is slightly larger, ~ .6-3 x 10-'5 N/m2

(from Figure B-1).

(b) Higher terms in the gravitational potential. The Earth's
equatorial bulge (J2 term) contributes a gravitational force

about 10—3 of the l/r2 term; the next higher moments are of
order 10"%. The contribution to gravity gradient is a few
parts in 10—3 of equation (5) and is not significant for the
present treatment.

(c) Spacecraft motion. Estimates of the effect of spacecraft
motions are attached in Appendix D. Major maneuvers are
excluded. Provided attitude excursions are kept small, as
by Control Moment Gyros, the limiting factor appears to be
the shift in spacecraft C.G. (2 or 3 cm) caused by astronaut
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translation. The motion of a free particle relative to
the spacecraft is uncertain by a few centimeters, a
reasonable error size. :

3.0 TYPICAL TRAJECTORIES

In Section 3, typical particle motions are described.
Just as projectile motion on earth can be expressed (grossly)
as a combination of linear and parabolic motion, particle motion
near a spacecraft can be expressed as a sum of circular,. ellip-
tical, linear, and parabolic motions. The analysis is done in
Appendix C.

3.1 Perpendicular to the Orbital Plane

An important property of the differential equations (7)
and (10) is that the component z, parallel to the orbital pole,
decouples. The z equation is the familiar differential equation
for simple harmonic motion.

z = -0z (13)

The solution has the form:

z(t) = 2(0) cos wt + sin wt. (14)

This sinusoidal motion up and down from the plane corresponds
physically to the particle being in an inclined orbit of the
same period as the station. It is independent of the in-plane
motions described later.

<

Z({t)
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3.2 Solutions of the Equations - The Elemental Trajectories

The in-plane local vertical equation of motion is
(from equations 10 and 11).

v = w2(30 v o+ 2m(_2(1))\'7 +(g) (15)

00

In Appendix C this equation is solved by Laplace
transformation.* The result will contain two vector initial
conditions; conventionally the initial position, V(0), and
velocity, V(0). Any linear combination of these will do,
however, and Appendix C shows that a suitable choice separates
the solution into three terms, each with a single constant, a
simple time dependence, and a simple geometrical behavior.
The resulting initial conditions are labelled E and C; the

drag acceleration, d, controls the third term.
_ 21410 _ _ 3 00
v(t) = §(02)A( wt)E +[1 Emt(lo)]c (16)
+ d dot
202 --3(1»1}:)2

In Appendix C, the inertial equivalent of (16) is
obtained by rotation, that is, by multiplying (16) on the left
by A{wt) and simplifying. The separation of (16) into three
terms is not, of course, affected, and the equations for these
elementary trajectories are tabulated in Table 1.

The letters E and C are mnemonics. Relative to the
spacecraft in its circular earth orbit, a particle in a pure
E~-trajectory is in an Elliptical orbit of the identical period.
The E-term has no secular time dependence.

A particle in a C-trajectory is in a Circular orbit,
of identical period if the initial radial component (Cx or CE)

is zero. Otherwise, it has a different period and drifts away.

*For simplicity, the 2x2 matrices are kept explicit
in the text, although in Appendix C they are represented as
combinations of a small number of linear operators.
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The third elementary trajectory depends only on
the Drag acceleration, d, and always shows a secular time

dependence (t and t2).

The elements, and a certain range of deliberately
chosen combinations are geometrically simple, and are summar-
ized in Figure 1. The drawings on the left are for the
inertially oriented station, those on the right for the
local vertical station. Each drawing shows the initial
condition vector, the locus of motion, and an indication
of the sense of motion. Note that motions in the inertial
station turn with the orbit, counterclockwise, while motions
in local vertical turn against the orbit. The rest of section
three describes the geometry of these trajectories.

The "general" trajectory is a combination of these.
A few examples are given in section four. Spirals are typical
of inertial trajectories (see Drag in Figure 1), looping
motions, of local vertical.
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3.2.1 The C-Type Elemental Trajectory

C-type trajectories describe bodies
moving in circular orbit around the Earth.
From a local vertical space station also
in circular orbit, we should see the
bodies move at constant altitude.

From Table I (or (16)), the C-local
vertical elementary trajectory is:

3.0
V(t) = C Ewt(cx) (17)

The initial position, C, can be chosen
arbitrarily in the V-plane (x,y). If
Cx is zero, the body lies on track and

X

SPEED - 3/2wCy  js stable there. Except for phase it

is in an identical orbit with the station.

For a general C, the particle drifts.

As drawn, it lies above the station orbit
and drifts aft. The drift velocity must
be given at insertion.

From an inertial station, an observer
sees the track-line, like the Earth,
travel around the station.

The inertial view of the stable particle
on orbital track is a circle, with the
orbit, at orbital rate. The particle
must be inserted into this trajectory
on track, with the speed wC, as shown.
The general C-trajectory is a spiral
around the C.G. of radius |V(t)].

SPEED wC z(t) = Ant) [C - %wt‘g ” (18)
g
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3.2.2 The E-Type Elemental Trajectory

STATION
POSITION AT

\
PARTICLE \
ORBIT -~

STATION
ORBIT

Het

VELOCITY (2w) [E|/3
Z(0)

MAJOR AXIS ALWAYS
ON TRACK = 8/3 |El

MINOR AXIiS = 4/3 |El
SPEED: CROSSING Y= 2/3 w IEl
CROSSING X = 4/3w IEl

E~-Type trajectories describe bodies moving
relative to the station, in elliptical
orbits of semi-major axis and thus period
equal to the station. The line of apses
of the elliptical orbit lies along E.
Apoapse is displaced outward by 2E/3.

As seen from the inertial station, the
particle remains generally in one area.
From Table I, the E~Inertial trajectory is:

-10

z(t) 01

- F + %A(th) E (19)

This is a constant vector plus a second
which rotates with the orbit at twice
orbital rate. Construct the drawing as

follows. Choose the arbitrary initial vector
E, in the plane. The matrix (Fé g) (called Q

in Figure 1 (following page 12) and in the
appendix) changes the sign of Eg; geo-
metrically, it reflects E in the n axis.
The sum locates the initial position z(0).
The point Z(t) then describes a circular
path of radius |E/3| around E as center.

The E~-trajectory would be a good sub-
satellite orbit for an inertial station.

As seen from a local vertical station, the
E~-trajectory travels around the origin,
against the orbit. In Table 1, the alter-
nate form for the E trajectory can obtained
from (19) by multiplying on the left by
A(-wt). Appendix C shows that the reflec-
tion matrix changes the sense of w on commu-~
tation; matrix addition then gives

V(t) = g(ég)A(nwt)E (20)

3
A(-wt)E describes a particle moving in a
circle against the orbit. The matrix dis-
torts the circle into a 1:2 ellipse* with
major axis on track.

*This may be seen in a special case.

(x)=(a0)A(_wt)(ll=!a0N coswt)=( a COSwt)
y 0b 0 ObJl-sinw t -b sinwt
These satisfy (/)2 % (y/b)2 = 1.
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3.3 Interesting Special Cases

As indicated above, the general inertial trajectory
spirals, and the general local vertical trajectory tends to
loop. There are some interesting special cases among the mixed
E and C orbits, however. All are periodic--that is, C_ or C
must be zero. x &

Looking at Figure 1, the inertial E and C trajectories
are circles, the E-offset from the origin, with angular velocity
2w, the C-centered on the origin with angular velocity w. There
is a continuous range between these. The figure on the left
shows an arbitrary example. The interesting case is on the
right; |E| = 3/2|cn|.

\

E
N (—10 E ( 1/3 (‘;‘:)E

01/ 3

The trajectory is a cardioid, and the particle comes
to rest at the cusp. This fits the case of the particle re-
leased from rest on the instantaneous track line. It is the
only periodic orbit accessible to a particle started from rest
in an inertial frame (the particle at rest at the C.G. is a
degenerate case of this).

Looking at Figure 1 for the local vertical C and E
trajectories, the most general periodic motion is simple. The
E~-type ellipse is displaced arbitrarily along the track by the
vector C.
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If CX were positive, the center of the ellipse

would drift to the right. In Earth orbit, drag makes it
impossible to strictly realize any of these periodic orbits.
Drag is covered in the next section.

3.4 Drag-Local Vertical: E = C = 0

Even for missions at Skylab altitudes, drag is an
important force, resulting in translations approaching 10 meters
per orbit. The elemental drag trajectory in local vertical is
a parabola. The particle rises at constant velocity 2d/w and

accelerates aft in track. From (16),

d 4o t
202 -3 (wt)

. ELEMENTAL DRAG TRAJECTORY

v(t) 2

SKYLAB CASE,

2dt/w

_% at? (21)

The initial position is the origin.
The initial velocity, V{(0)=2d/w.

3w22

Y ==§ T ¥ (22)

The drawing is for a case like Skylab, for which the
drag acceleration is ~10~8g (10~ 7m/s2) and the parameter d/w? ~0.1
meter. The particle rises vertically (velocity ~0.2mm/s) and
in one orbital period (wt = 2n) drifts about 6 meters aft.
Physically, the Skylab is dropping and moving forward.*

3.5 Use of the Elemental Trajectories

The drag trajectory illustrates the use of the elemen-
tal trajectories. These are particular solutions which can be
added together to represent arbitrary initial conditions. The .

- last figure demonstrates a surprising fact: the particle responds
to an acceleration in the plus track direction by rising in radius
and accelerating aft. This result is explicable as follows.

*As noted, these numbers are about right for a Shuttle
in the late 70's at 500 km. Near 100 nautical miles (200 km),
d/w2 can be 10 meters, and the displacement in one orbit, 600
meters! See Appendix B.
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First, drag is a small force. The physical meaning
of d/w2 v0.1 meter is that for distances from the C.G. greater

than this, the gravity gradient accelerations m2V exceed d.
Thus, the last figure (5 meters full scale) is a picture of
gravity motion in response to drag. The particle is rising
into higher, C-type orbits, and drifting aft accordingly.

Secondly, the particle is not started from rest; the
drag trajectory includes an initial, radial velocity, which in
fact does not change. To obtain the solution for a particle
started from the origin at rest, an appropriate 2:1 ellipse is

added. By matching the position
(V(0)=0) and velocity requirements,
we find

A
Ey=—3 d/wz, or .3m, and
1L Y4 2
17/ Cy= 4 d/w”, or .4m
THE SUM OF THESE with the vertical components zero.

ELEMENTS IS THE
DESIRED TRAJECTORY

P X

METERS
.31

wt=T ZERO INITIAL
VELOCITY wt=7/2

/4

ELEMENTAL
DRAG TRAJECTORY

d/w* =0.1

L
T

-1
METERS

-2

-3

Alternately, Appendix C has expres-
sions for E & C in terms of initial
conditions.

This gives the following gqualitative
results: The motion of the particle
from rest starts slowly; the devia-
tion from the drag trajectory is
always leftward; the deviation in
track will not exceed the major axis
of the ellipse, or 0.8 meter; devia-
tions in vertical will not exceed
the semi-minor axis of the ellipse,
or 0.2 meter.

Grossly, then, the drag trajectory
is a good guide to how the particle
started from rest will behave. The
figure at left shows the detailed

path for the first half orbit on a

scale such that the initial, s=%dt

2

behavior can be seen.



4.0 APPLICATIONS

The vector equations of motion (7) and (10) and the
elementary trajectories, summarized in Figure 1, give a basis
for understanding forces and motion in orbit. Applications
are presented in five areas: the general behavior of loose
objects in spacecraft; work-aids; the acceleration environment
for low-G experiments; trajectory design for sub-satellites;
and rendezvous. Much of this, of course, is not new.

4.1 General Observations

This section deals with the general behavior of
loose objects in a space station.

Weightlessness is a good description for times of
about a minute. That is, if objects are observed casually,
to a centimeter Or so, they follow first law trajectories

(R=0) for about a minute. To show this, calculate the time,
t, for a displacement s assuming that, as in the Skylab crew
quarters, the object is a distance r of about 10 meters from

the center of gravity. Gravity gradient is the important

force, since r >> 4d/u°.
2s B
t=\z= “\/2
wr

For s of one cm and r of 10 meters, this is tv30 seconds.*

103sec.

2l

Similarly, Coriolis accelerations are not important
for gross motions in a short time. Suppose one astronaut throws
an object to another in a local vertical station. Calculate the
transverse displacement, s, for an object thrown a distance d
in time t.

3

(2wV)t2%lO— dt. The angular displacement,

N =

s =

*Practically, objects are still within reach after
moving ten cm; distance to the C.G. is less for vehicles like
Apollo. Therefore, t's of several minutes are sensible. On
the way to the Moon, w? drops as the cube of the distance from
Earth and weightlessness is an excellent description.
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s/d = 10_3t, is proportional to transit time and quite small
(one degree) even for long slow throws (say, 10 m at 1/2m/s.).

Over longer times, objects will move with the accel-
eration patterns of the differential equations. Figure 2 shows
the inertial acceleration pattern of equation (5) superposed on
a Skylab silhouette. Two cases are shown, separated by a gquarter
orbit or 22 minutes. In the first, the long axis of the assembly
lies near track and any object dropped in the CM tends to pro-
pagate down into the body of the workshop. Twenty minutes
later the forcefield is reversed. -

An object at rest starts with this acceleration
field. 1In the inertial case, it then turns counterclockwise and
(in general) spirals out until it meets an obstacle. The
displacement after the first orbit is 6t times the initial radial
(¢¢(0)) distance from the C.G. Particles released near track
are displaced less. The particle on-track describes a closed,
cardioid orbit.

3
z !
A
LOCAL VERTICAL LOCAL
AT ZERO TIME VERTICAL
AT ZERO
TIME
_ A -6mél(0)
T
n - ¢ —
~ INERTIAL
C[D\/ COORDINATES
INERTIAL
COORDINATES
MOTION OF PARTICLES
MOTION OF @_ STARTED FROM REST —
PARTICLES STARTED TIME: ONE ORBIT
FROM REST (~90 MIN)
TIME: ONE RADIAN
OF ORBITAL MOTION

{~ 15 MiN)
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FIGURE — 2 ACCELERATION FIELD NEAR AN INERTIAL VEHICLE (SKYLAB) FOR ORBITAL
NOON / MIDNIGHT AND A QUARTER ORBIT LATER. ARROW LENGTH IS PROPORTIONAL
TO ACCELERATION AT THE ARROW TAIL. COMPONENT PERPENDICULAR TO THE
PAPER IS RESTORING.
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LOCAL VERTICAL
COORDINATES

In a local vertical station, the first plane motion
of an object is radially away from the track line. Coriolis
turns the particle clockwise. The trajectory is a general
C + E type. For an initial displacement x in the vertical,
the elliptical component is large (minor axis 6x). The
maximum excursions are shown in the figure.*

To summarize, "weightlessness" is a good description
of free motion for the first minute or so. Displacements from
first law behavior are typically under a centimeter. Subsequent
motion is curved, with the orbit for inertial stations, against
the orbit for local vertical stations. Displacements in the
first radian of orbital motion (15 minutes) are comparable with
the initial c.g. displacement, r. Displacements over an orbit
are (excluding periodic motions) typically 20-40 times r, plus
whatever is due to drag (5 or 6 m for Skylab).

4.2 Work Aids

There are two quite different physical problems for
which work-aids must be devised, closing the force-loop and

*This is the type orbit the Apollo lunar sub-satellite
would follow if it were merely set loose in the Service Module
bay, facing along a radius.



localization. These may not have been adequately defined
in the past; and, judging at least by the space experiments
which have been prepared in the last few years, there has
been a tendency to assume the problems were mysterious and
required sophisticated devices to solve them.

In short time periods, the astronaut may exert
large forces and torques on a work-piece. The requirement
is to close the system so that the net acceleration of the
two is zero. Putting the Hasselblad between one's knees to
work on it is a homely example. For larger jobs such as
disassembling an electric motor or plumbing, there is no
substitute for terrestrial tools like the vise which immobi-
lize the piece conveniently relative to the spacecraft.
Another device must be used to tie the astronaut to the
spacecraft. Foot restraints are used on Skylab. The extreme
example is a deep molded chair which clamps to the bench and
couples the forces through thigh, knee, and back restraints.
The critical point is that these work-aids are rugged, and
transmit substantial forces. A good workshop on earth or in
orbit has many kinds of clamps, vices, or restraints.

The second problem is to prevent objects from
drifting away. The requirement is that a restraint system
(or systems) shall bring objects of various sizes to rest
from velocities of a few centimeters per second, and hold
them neatly until they are wanted. Obvious methods, many
used already on manned flights, include:

(a) elastic cords for larger objects.
(b) a pegboard with clips

(c) velcro (velcro of the right size probably
will hold small screws and nuts)

(d) magnetized racks. At these force levels,
some ferrite paint would probably be ade-
quate for immobilizing objects.

(e) plastic bags and boxes, organized in shelves,
or on the bench by (b) and (c).

(£) 1lazy susans, that is, rotating trays
which hold parts by centrifugal force.
(The rotation rate needs to be faster
than orbital rate, but one rotation
in a few minutes is fast enough.)



The problem of work in weightlessness is not hard.
Astronaut experience shows it; the analysis here can add
little more. It is only the projection of tools (and the
man) into this apparently alien environment which is hard
and requires high technology.

4.3 Experiment Design

The acceleration levels required for experiments
vary widely. Current estimates for space biology term

10—4g satisfactory; 10 6g was observed to start convection
in the Apollo 14 oxygen tanks. There are more stringent
requirements in relativity experiments, for instance, but
it is unlikely these would be flown on a manned vehicle.
This section deals with the acceleration environment in low
Earth orbit.

There is an irreducible stress within_a specimen, set
by the gravity gradient acceleration of order w<s, where s is
the specimen size. The experiment sensitive to gradients of order
10~6s must be flown at higher altitude.

Other stresses will be communicated to the specimen
by its container, or by associated fields. For short times,
the specimen may be left free. For longer times, it must be
confined. Within limits, the larger the zone within which the
specimen can drift, the smaller the control forces can be. In
low Earth orbit, contributions to specimen motion, assuming an
initial C.G. displacement r, are:

Acceleration Displacement in 1 rad

Gravity Gradient¥* ‘ (1--3)rw2 N 3T
Initial Velocity (4v) 0 v 103Av
Coriolis (forav) 2u(Av) Y 107 Av

Drag d N d/w?

Light Pressure smaller than drag

Vibration** ~ (frequency) 2 (periodic) probably mm, max.
Ast;onaut,Motion** ? several centimeters,** max.
Attitude Change o** v rd over attitude cycle

There will be other, substantial sources of motion. A
free floating molten drop can probably provide 108 accelerations
by uneven evaporation. A moving animal can obviously pulse
himself to a g or so.

*Tncluding the centrifugal forces in local vertical.
**The last three entries are discussed in Appendix E.
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Considering the list, it appears that the contributions
could be held individually near the limiting drag acceleration of
a Skylab class vehicle, 10-8g provided: displacement (<10 cm) is
allowed to isolate the specimen from vibration and astronaut
motion; work sites are located within rv10cm of the C.G. for an
inertial station or within rv10cm of the trackline for a local
vertical station; attitude motions are small (as with C.M.G.
control); and initial velocities are small (Av <0.,1 mm/s).

The average acceleration of the specimen -- or the
control accelerations necessary to keep it near rest -- could
optimistically be as small as 10‘7g, or 10~6m/s?

It is doubtful that most experiments will
require such low acceleration environments. A knowledge of
the residual accelerations may however be important to an
investigator. For Skylab, many experiments are located in the
crew quarters at distances of 10 meters from the center of
gravity. An experiment attached at such a point will see

gravity gradient accelerations ranging from 10 5m/sec2 towards
the C.G. to about twice that away from the C.G., alternating
over periods of twenty minutes or so (see Figure 2). If the
experiment is marginally sensitive to accelerations of this

order (lO-Gg), this shifting around could confuse the experi-
mental results.

It is clearly desirable that the Space Shuttle and

its Sortie module be configured so that the on-orbit C.G. and
(for local vertical) track line lie within the experimental

area. Configurations where the Sortie module is hinged and
deployed outward have higher residual accelerations* and can
not achieve the minimum acceleration environment.

At lower altitudes where the atmosphere is denser
drag will omlnate, grov1d1ng in reasonable cases (Table B-1)
nearly 10~ m/s (10~ This is high enough to be signifi-
cant for experiments 1nvolving convection in large volumes.

Accordingly, it would be desirable to conduct
studies of systems which could provide a Shuttle this
kind of acceleration. The force required is ~10N or a few
pounds force. Since drag is not constant, a servo controlled
scheme would be required. The shuttle would "fly around"
the experlment :

4.4 Subsatellite Orbits

There are at least three families of orbits in which
subsatellites can be placed and subsequently retrieved. These
are: the E-type orbit, the C-type orbit, and drag-type orbits.

*e.g;, if the shuttle flies nose down with the module
along track, drag is highest. 1In other orientations, gravity
gradient is high.
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I// ‘\ p /' \\\
/ ! The relative drag of the subsatellite
\ ; can be trimmed to equal that of the
\ ’ parent spacecraft (Appendix B) by
\. C-TYPE ! using much heavier structure than
N

P is typical of automated satellites
today.

“A_ - —’I
INERTIAL

The first order solution requires
E-TYPE that the subsatellite be extended on
a boom. To simplify the satellite,
the device on the end of the boom
imparts the initial velocity necessary
to insert the satellite in an E- or
C-type orbit. The required velocity
LOCAL VERTICAL is small, but must be precise.

A motion perpendicular to the plane z(0) could be added so that
the satellite will not pass through the station wake.

If the subsatellite is to be kept visible, or within
the field of a communications antenna, E-type trajectories are
preferred for an inertial mission and C-type for a local-
vertical mission.

C. 0. Guffee pointed out several

- years ago(s) that drag could be

employed to achieve a free return
of a sub-satellite.* 1In the

\\\‘ drawing, the parent vehicle has
Tt higher drag than the satellite.
LOCAL VERTICAL The satellite is deployed in a

circular orbit below the parent,
with appropriate forward motion and a small upward velocity
2d/w. From the parent point of view, it drifts forward and
upward in a drag-type parabola and is recaptured above the
parent.

4.5 Rendegzvous

Related techniques have been used to study Gemini and
Apollo rendezvous. The elemental trajectories are easy to use
in hand calculations and to see what is or is not possible.

*Guffee's particular case is a mixed orbit and shows
looping elliptical motion.
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As an example, Appendix D describes a Hohmann transfer.

5.0 SUMMARY AND CONCLUSIONS

The equations of motion for a particle in or near
an orbiting spacecraft have been presented, and the solutions
written in a geometrically simple way. The gross motion can
be described as a sum of three elementary ones, two due to
Keplerian motion and one due to drag. The geometrical results
are in Figure 1.

It is believed this material gives a basis for
approximate understanding of both particle motion and the design
of low-g experiments.

Weightless, unaccelerated behavior is a good descrip-
tion for at most a few minutes. Beyond this, motion due to
gravity gradient and drag must be accounted for. Under favorable
circumstances, low-g experiments may realize acceleration environ-
ments near these limiting values, approximately 10-6 to 10'7g.

The experiment must be isolated from spacecraft motions and
vibrations.

As regards the supporting design of Shuttle or station
experiment systems:

(a) three orbit classes are shown for co-orbiting satellites

(b) for low gravity laboratories, the local vertical
attitude is promising, and deserves more careful study

(¢) accordingly, it is desirable that space stations or
Shuttle Sortie modules include the center of gravity
of the shuttle and the track=-line in a local vertical
attitude

(d) drag is sufficiently large at low altitudes that a
low thrust (1lON) system capable of compensating for
drag probably needs consideration.

ol

G. T. Orr

GTO_ab / / %/f

lOll-SS “dly S. Shapir
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APPENDIX A

Egquations of Motion

Appendix A leads to the vector equations of motion
for a small particle in or near a spacecraft in circular. orbit,
with emphasis on the operational meaning of the terms. The
procedure is to start with definitions in inertial space,
where they are presumably well understood , then make the
coordinate transformations to obtain derived results for local
vertical and inertially oriented space stations.

Inertial Laboratory (R)

Measurements of Position, Velocity, and Acceleration

The observer in his laboratory measures the position
of the object in some reasonable way. Conceptually, he can set
out meter sticks along orthogonal axes, take Polaroid photographs
in pairs (including an image of his stop~watch), and analyze
these to obtain the three components of a vector position R.
He can reduce successive measurements, Rl’ R2, R3... to obtain

estimates of velocity R and acceleration R.

The expected behavior of the object depends on the
experimental conditions, and is codified in the descriptions
of common forces, which can be added to give a resultant force
and divided by particle mass to give a resultant acceleration.

. _—]; _
R(expected) B HIE:Fi (A-1)

Ssome of these forces are convenient rules, like
Galileo's observation_that all objects fall with the same
acceleration (9.8 m/s? to better than one percent, anywhere on
Earth). Others are more general, and at least to experimental
accuracy, are "laws". This includes, for instance, the Newtonian
expression for the acceleration of a small body near a larger one:

R _(GM
:.E.{ = —' O( ) (A—Z)

3
IR, |
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RO is the radius vector from the center of the Earth

to the particle, and (GM) a constant, the gravitational para-
meter of the Earth.

Most of these laws are most simply expressed in an
inertial laboratory, unaccelerated and non-rotating as judged
by observations of the fixed stars. The object of this appendix
is just to make this common catalog of laws applicable to orbital
flight, e.g., to express the measured accelerations as some
correction terms plus an Rov corresponding to the "inertial"
catalog of forces.

Forces and Stresses

One caution is necessary. Qften, as when a ball is
accelerated by a bat, the force F = mR is conveyed through the
body by internal stress. This is not so for gravitation, which
acts nearly equally on all mass elements of a body, or for the
centrifugal and Coriolis forces which are accidents of the
coordinate system. The freely falling body is almost unstressed;
it is when the object is constrained from accelerating by 1lying
on the Earth or resting on the walls of the space station that
it is stressed.*

Laboratory System (Z) (The "inertially oriented" Space Station)

Consider now a laboratory which is inertially
oriented, but accelerating in a circle around
the Earth with angular velocity w.

In inertial, astronomical coordinates, let
the initial position be Ro = D. Define the

rotation operator A(wt) which rotates a
vector counterclockwise around a chosen
axis by an angle (wt). Then at t, the

station position is A(wt) D.

*This kind of distinction led Einstein in the General
Theory of Relativity to try and make gravity a property of
the coordinate system rather than an independent force.
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The observer now sets up shop with meter stick and stop watch,
and performs measurements of position, Z. A corresponding
"Inertial" (R) measurement would be

R, = 2+ A(wt) D (A-3)

By differentiating, obtain a relationship between the
measured values, Z, Z, and Zz and the catalog of 'expected'
behavior in terms of Ro' Properties of A(wt) are developed

in the note (see next page). In particular,

Ro = % + wP Ap(wt)- D (a-4)
R =% - w2 A (ot) D (A-5)
o P
Inverting,
2

Z = w Ap(wt) D + Ro (A-6)
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NOTE:

In component form, with z the orbital pole, X along
the radius, D, and y in track, A(8) is a rotation matrix,

cosg =-sins O
Afg) = sing coss O
0 0 1

(1) As written, A will rotate a vector counterclockwise in the
direction of prograde motion as seen from the orbital pole.
Its properties can be derived from this or the component
representation.

(2) Two rotations around the same axis are additive

A(el) A(ez) = A(oq + 62)

(3) Rotations commute (from (2))

A(ey) Ale,) = A(e,) Ale)

(4) There is an identity,

A(0)

100 _
01 o) =1
001

(5) And for each A(6) there is an inverse A‘l(e), so that

a"l(e) a(e) = 1. a~1(e)

A(-6) and is the transpose of A(9).

(6) The time derivative A(e)

i

-sin® -coso 0
0 0 0

cosf =sin8 0) 6 = Ap(e+1y2)é

Ap is the plane rotation operator with no z component. Of
‘course, - sine = cos(6+ 1¥2), cos® = sin(6+ y2).

Note Ap(el) A(e,) = Ap(el) Ap(ez)

(g-é}. For brevity,
A(m = =10 _ _ I
P 0 -1 p’

Thus, the velocity associated with A(wt)D is wP Ap(wt) ’

(7) Special values. Ap(vVZ) occurs often
2

call it P for perpendicular. Note P

perpendicular to A(wt)D and of magnitude wD, as it ought to be.

(8) AP(G) ='I cosg + P sind is used in Appendix C.
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LABORATORY SYSTEM (V) (The "local vertical oriented" Space Station)

The origin of (V) coincides with the origin of (Z).
At time zero, the axes coincide. The

ot (V) laboratory axes then rotate as the

- station goes around the Earth. Call

the measurements of position, V. Any

measured object which appears to be at

rest, is, from the (Z) or (R) point of

view, in prograde rotation. That is, the

corresponding Z are rotating,

Z = A(wt) V. (A-7)
wt
Substituting in (A-3),
R, = B(ut) (V+D) (A-8)
RO = A(wt) V + wPAp(wt) (V+D) (A-9)
’Ro = A(pt)V + 2wPAp(wt)f7 - szp(wt) (V+D) (A-10)

To find the (V) observer's expected accelerations,
multiply (A-10) on the left by A(-wt) and rearrange

T o= u2 I, (VD) - 20P¥ + A(-ut) R, (A-11)

In the absence of force, he will see accelerations ig
the plane which are functions both of position V and velocity V.
These are the centrifugal and Coriolis forces.

GRAVITY GRADIENT

The primary force on an orbiting station is of course

. 2
-gravity, which supplies the centripetal force w D necessary to
keep the vehicle in its circle.



GM _ 2
—_— T W

[ |3 (a-12)
D

Since laboratory and free objects fall together, no
measurement made within the (Z) or (V) laboratory can detect the
full gravitational acceleration of Equation A-2. On the other
hand, wvariations in the gravitational field will be detectable,
albeit over longer times. These can be estimated by expanding
A-2 in Taylor series. A-2 was:

) R, (GM)
R o= -9 (A-13)

3

Expressed in the measurables of the local vertical (V)
system, this is (use [A- 8])
¢

_ A(uwt) (V+D)GM
| v+D] 3

o = (A-14)

(the value of the scalar denominator is not affected by the A(wt)).

A Taylor series expansion for a vector F has the
following form;

F(V) ~ F(0) + V.VF (A-15)

V=0

Note that keeping only the first order in |V|/|D|,
with D greater than 6000 km, gives a very useful approximation
to R . VF is the direct product whose matrix representation

9

would be, (VF)ij = 3;; Fj' Expéndlng, (A-16)
iiom-A(wt)(GM) : D‘3+v- 1—3—3—D—-§ (A-17)
| D] |D| | D|
a :
*Note: if V= (x,y,2), W = I, V|D+V| = 23 = D+V, a unit

| D+V|

vector. In (A-17), V-DD = (V-D)D, a resultant vector in the
radial direction.



The first term is the 9 m/s2 or so which supplies
the centripetal acceleration to hold the station in orbit.
The second term is a vector restoring force, tending to restore
the test object to the origin. The third term represents the
decrease in gravitational force with distance from the Earth.
Its action is purely radial (in the D direction) and repels
the test object from the tangent plane.

Equations of Motion - Local Vertical

To obtain the equations of motion, which describe the
perceived motions of a particle under gravity gradient, with
any peculiarities of the laboratory involved, (A-17) must be

substituted for ﬁo. Taking the local vertical case, (A-11),
and using w2 = GM/ D|3:

vV = mz (Ip - I + 3DD) Vv - 24PV (A-18)

Note here that the centrifugal terms from A-11
cancel all but the axial component of the restoring force
gravity gradient term. The radial gradient and the velocity
dependent Coriolis term remain. (Since gravity gradient does
not include "all forces", a term A(—wt)ﬁé should be added.)

Note that the physics--rotation and
gravity--gives observer (V) a strongly
polarized view of the world. A com-
ponent representation is natural.

With x in local vertical, parallel

to D; y along track; z parallel to the
orbital pole; and V = (x,y,z)

[ . 2 [3* y o
, V=nuw 0] + 2uf-% | + A(-wt)R]. (A-19)
- 0

A more direct expression of Ar18 is
the matrix form used in the text, where F/m = A(—wt)RO.

, [30 0 010\ 3}
V=0uwl000]Vv+20|-100f7+A(-ut)R] (A-20)
00-1 000
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In the solution outlined in Appendix C, the "other" acceleration

Ré is taken as a constant, in-plane, local vertical vector,

A(—wt)Ré = (A-21)

O
1l
t

where the labels of the components are acronyms (lift and drag--
although d acts in the positive track direction).

Note that Equations (A-20) and (A-21) comprise two
coupled equations, in x and y, and a separate, z equation. This
is a major simplification. The rest of the work can be carried
out in two dimensions.

Equations of Motion: Inertially oriented

It is easiest to get the inertial equations by rotation

of A~-20. In two-dimensional form, (A-20) is*
¥ o= o2 (8 g) V-20PV + L (A-22)

The relation between the V and the inertial, Z, family of
vectors is:

V = A(-wt) 2 , from .(A-7), (A-23)
V = A(-wt) 2 -wPA(-wt) Z (A-24)
¥ = A(-wt) & - 20PA(-wt) 2 - w2 A(-ot) Z (A-25)

Substituting and multiplying on the left by A(wt), the
Coriolis term cancels:

7 = miz'{A(wt) (g g) A(-wt) - I} Z + A(wt)L (A-26)

*Since all vectors are in-plane, we can omit the Ap subscripts
for operators with zero third components.
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This is simplified (using property (5), p. A-4).

7 = w2 {A(wt) (62 -?L) A(-wt)}Z + A(wt)L , (A-27)

which, with the z component added in again is the equation
of the text (7).



APPENDIX B

Drag and Numerical Data

This appendix contains a resume of the drag equation,
plus support for various numbers used in the text.

The drag acceleration on a vehicle of frontal area
a and mass m is:

C 2
= 2 paVv -
d = 5= = (B-1)

where p is atmospheric density, v is orbital velocity, and C4
is the drag coefficient. A unit frontal area sweeps out a mass

(pv) of atmosphere each second, or a momentum pV2. For free
molecular flow, it is typically assumed that molecules attach
themselves to the vehicle, thermalize, and re-emit with a much
lower velocity Vo Then, the net force on the wehicle is a

little greater than pa v2, and CD N 2.

Under rare circumstances, such as a flat plate with
clean surfaces at low angle of attack, molecules can re-emit
specularly. CD then is greater than two, and there can be

substantial 1lift.

CD = 2 1is assumed

v2 is reasonably constant in low Earth orbit (see

Table B-2). Log v2 is taken ~ 7.8 with v2 in mz/sz.
Atmospheric density is highly variable. As a result,

the drag 4 varies widely and the calculation is not sensitive

to uncertainty in CD or v. Figure B-1 shows the logarithm of

atmospheric density (kg/m3) as a function of altitude. It is
adapted from the 1966 supplement to the U.S. Standard atmosphere.
It shows that density, p, is two or three times greater in the
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sunlit part of the orbit than in the shaded portion. Density
peaks shortly after orbital noon. Further, density is very
sensitive to solar activity. Skylab will fly near solar
minimum when drag is low. With current schedules, Shuttle
and Station will fly near solar maximum when densities can
be a hundred times greater.

The right-hand scale of Figure B-1 shows the frontal

pressure (newtons/mz) on a vehicle with CD = 2,

log pv2 = logp + 7.8.

Area/mass ratios and typical vehicle drag accelera-
tions are tabulated in Table B-1 for Skylab and Shuttle. A
monolithic, nuclear powered space station would be comparable

with the first entry under Shuttle (d = 2 x 10”7 m/sz). Modular
versions with solar power will have log A/m more like the Skylab.
Subsatellites will tend to higher A/m. Typical

satellites today have bulk densities of (5-20 1b/ft3, or a
specific gravity of .1 to .3. For a sphere, for instance, A/m
would be:

3

A 3 .75x10 2
— = = < m K
m 4pR (Sp. gravity) R /Xg
—2 -
0.1 SPECIFIC
GRAVITY

0.2
0.3

SKYLAB (AVERAGE)

//V/ » ///// / 277 (INERTIAL)*
_
.

{LOCAL VERTICAL)*

3 1 3
RADIUS, m

o

LOG A/m, m?/Kg

<

1.

*SEE NOTES TO TABLE B-1
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It appears possible by using very heavy structurg,
which is permissible in the shuttle era, to trim sub-satellites
to A/m's identical with a parent vehicle.

Table B-2 shows that orbital velocity does not vary

much with vehicle altitude. Values of mz for the gravity
~gradient calculations are also tabulated.

Table B-2

w2 and v Versus Altitude*

Moon Earth
Altitude (km) w2 (572 w2 (s™2%) v (m/s) log v2
100 .79 x 10°° 1.47x10°% 7.84x10°  7.789
200 67 1.40 7.78 7.782
400 .50 1.28 7.67 7.769
600 .38 1.17 7.56 7.757
800 230 1.08 7.45 7.744
1000 .24 .99 7.35 7.733

* (GM) Earth=3.98x1014m3/s2, . (GM)Moon=4.902x1012m3/s2,
Equatorial Earth radius=6.378x10%m, Moon radius=1.738x106m.



APPENDIX C

Solution

This appendix shows a method of solution of the
differential equations, leading to the elemental trajectories
of the text. The initial condition vectors, E and C, are
expressed in terms of initial coordinates and momenta.

The z equation

It is important that the in-plane motion decouples
from that perpendicular to the orbital plane. The.z equation
is separable, and recognized in the text as the equation for
simple harmonic motion.

The equations in the plane: introduction

The components of local-vertical equation (A-20) and
(A-21) form a set of linear, simultaneous, second order dif-
ferential equations. There are well known methods of solution.
The result will be the sum of a solution to the homogeneous
equation (lift and drag forces zero) and a particular solution
of the inhomogeneous equation. The solution to the homogeneous
equation will depend on four scalar or two vector integration
constants.

The Laplace transformation method is used to solve.
the local vertical equation, obtaining closed form solutions
in terms of the time and the initial conditions. That is,

the integration constants are V(0) and V(0). The simpler
representation in E and C is then "recognized". The case of
a constant in-plane force L is solved, although it is clear
that solutions can be obtained for forces that vary in time,
for instance, models of solar pressure or a cyclic drag
force. .
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The local vertical equation in the plane is:

2 (30

- ¥ Cc-1)
00 V - 2PV + L (

V=

In the next section enough properties of queer

10

5 o are defined to permit algebraic mani-

matrices such as
pulation.

Definitions and Algebra

In Appendix A it was noted that physics in zero-G
gave a strongly polarized view of the world. The gravity
gradient force and rotation result in operators like

30
00

In particular,

which are sometimes awkward to handle algebraically.

30
00

commutation with A(wt).

has no inverse and has no simple rule of

For compactness, define:

x= {5 0) ma v - (39). (c-2)

X can be read, "select the x component of the vector..."
X and Y will be used below when they cause no particular trouble.

A better set when algebra may involve the A(wt) is:

I-= (% g , the unit matrix, and
(C-3)
-1 0 .
Q= 0 1]’ the queer matrix.
X = % (I-Q) , and Y = % (I+Q) . (C-5)

Q appears in the solutions of the equations, as is
quite evident on Figure 1 (following page 12).
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Properties of Q

(1) Q reflects a vector in the y axis.

(2) Q is its own inverse: QQ =

X
) (3) Trace Q = 0 and determinant Q = -1.
Vv
: (4) PQ =-QP .
| 0 -1 ~1 0 o —1
Y oy Q= = 0.E.D
! 0 +1 sEe
= o-(1 10 | o)
I~ av

(5) Q does not commute with A(wt), but
OA(wt) = A(-~wt)Q.

(a) Q commutes with the unit matrix:

QI = IQ.

(b) A(8) = cos6I + sin6P. (Note (8)
on p. A-4)

Then OA(6) = (cos6I - sineP)Q

A(-8)Q, Q.E.D.

Properties of X and Y

(6) X and Y do not commute usefully with the
A(wt). However, from (4) above, and (C-5),
PX = YP and conversely.

(7) XY = 0; XX = X; XI = X; YY = Y, etc.

(8) Combinations of X and Y have an inverse,

(ax + b¥) ™! = (bx + a¥)/ab, afo, byo.
(9) [ax + by +c1>]_l = [bX + aY —cP]/(ab'+c2)
a¥® o0
b#0

LAPLACE TRANSFORM SOLUTION
The differential equation (C-1) becomes

vV = 3m2 XV - 2wPV + L (c-6)
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The Laplace transformation of a function V(t) is defined:

L]

V(is) =
o

Jf e Sty (t) at

(C-7)

Familiar Transforms, obtained directly or by integration

by parts are:

Transform

a/s

l/s2

2/s3
w/(§2+w2)
s/ (s%+u2)

sV(s) - Vv(0)

sI + wP
(s2 + w2)

sv(s) - sv(0) - V(0)

Function

constant = a

t
t2
sinwt
coswt
‘}(t)} Vv(0) is the value
Q(t) of V(t) at t=0, etc.

A(wt) = I coswt + P sinet

The transformed version of (C~6) is

s2v(s) - sV(0) - V(0) = 3w2xv(s)

~ 20sPV(s) + 2wPV(0) + L/s.

(C-8)

This equation can be solved for V(s).

2

[s2 (x+¥) - 30X + 2usP]V(s)

(s+2wP)V(0) + V(0) + L/s.

(C-9)
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Use property (9) to find the inverse of the operator
on the left; left multiply, obtaining:

_ (% - 30%Y - 20sP)((s+20P)V(0)+V(0)+L/s)  (C-10)

52(s + w2)

The numerator of C-10 is:

s3v(0) + s2V(0) + s[w?(4X+Y)V(0) - 2wPV(0) + L]

- [663YPV(0) + 3w2¥V(0) + 2wPL] - 3w?YL/s. (C-11)

Use expansion in partial fra¢tions to express these
terms as transforms of tabulated functions. The expansions are:

1 o= L s
s(s2 + wz) wzs w2(32 + wz) (C-12a)
1 1 1 ‘
= - (C-12b)
s2(s? + 0%)  w¥s?  wi(s? + wd)
1 1 1 s
= - + (C-1l2¢c)
s3(s2 + mz) w2s3 w4s w4(s2 + wz)
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Terms can now be collected:

Transform Function Coefficient

sI/(sz+w2) cos wt —3XV(0)+2P\.7(0)‘/w - (X+4Y)L/w2 (C-13a)

wP/(s%+?)  sin wt P 6XV(0) - (4X+Y)PV(0)/u + 2L/w> (C-13b)
/s (constant)  (4X+Y)V(0)-2PV(0)/u + (X+4¥)L/w2 (C-13c)

wP/s? (wt)P ~6XV (0)+3XPV (0) /o = 2L/w> (c-13d)

w?/s3 (wt)2/2 - 3YL/w2 (c-13e)

The solution for V(t) in terms of V(0), ﬁ(O), and L
can be obtained by adding these terms, multiplied by the
appropriate functions.

The sine and cosine terms can be written in terms
of the rotation operators A(wt) and A(-wt), using the formula
A(+wt) = cos6Il + sineP. If

V = IV coswt + PW sin wt
or
= A(wt)D + A(~wt)E
then,
VED+E D = 5 (V4W)
WeD-E E = 3 (V-W) (C-14)

and,
D = % [3xV(0) + (-2X+¥)PV(0)/0 + (X~2Y) L/0?] (C-15a)
E =L [-0Xv(0) + (6X+3M)BV(0)/u + (~3X-6¥)L/u?] (C-15b)
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D and E are related. 1Inspection shows D is 1/3 the
magnitude of E; and the sign of X is changed. That is,
D=(~-X+Y)E/3 = QE/3. The trigonometric part of the soclution
is then:

A

E A(wt)QE/3 + A(-wt)E (C-16)

or,

Ve

(I+Q/3) A(-wt)E. (C-17)

This is the "E-type" elementary solution of the text,
with E defined by (C-15b) or somewhat more neatly,

E = % [-3XV(0) + (2X+Y)PV(0)/w - (X+2¥)L/w?]. (C-18)

The C-type elementary solution is obtained by setting
the constant term, (C-13c), equal C. Part of the term (C-13d)
linear in time is related to C.

Thus,

C = (4X+Y)V(0)

2DV (0) /w + (X+4Y)L/w? (c-19)

The operator - % X will convert the V and V coefficients

into those of C-13d. With the acceleration L=0, the complete
solution is obtained by adding to (C-16) the C element,

v c - %—wt PXC (C-20)

c

(I - %tut PX)C. (C-21)

With constant force, the remaining element is:

_ (X+4Y)L _ 3 .2 _
V= - tP S - 5t YL (C-22)
0

= YL, a drag acceleration is

In the text, only L ta

used. The constant 1ift case which permits a vehicle to move
along track at a constant velocity %/2w is also interesting.
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The local vertical general solution is the sum of
(C-17, C-20, and C-22):

V(t) = (I+0/3) A(-wt)E + (I-%wt PX) C

(X+4Y)L 3
2

- tP - t2 YL,
)

(C-23)

from which equation (16) of the text may be easily written
down.

Inertial Form

E

3

=3

|

The values for E and C in terms of Z(0) and %(0) are
obtained, starting with Equations C-~18 and C-19 and using
transformations (A-23) and (A-24) at time zero.

V(0) = z(0) (C-24)
V(0) = 2(0) -wPZ(0) (c-25)
(C-18) becomes:
-3%2(0) + (2X+¥)PZ(0)/w - (2%+¥)PPZ(0) - L (X+2Y)L) (C-26)
W
E=3 ((—X+Y)Z(o) + (2x+47)PE(0) /0 - L <x+zY)L) (c-27)
w
similarly, (C-19) becomes
C = [(4X+Y)Z(0) -2PZ (0) /v +2PPZ(0) + 35 (X+4Y)L] (C~28)
W
C = (2%-Y)Z(0) -2PZ(0)/w + % (X+4Y)L (C-29)

W

2
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' The forms of the elementary trajectories are obtained
using the transformation Z(t) = A(wt)V(t). Thus, (C~-16) becomes:

ZE = E + A(20t)QE/3. (C-30)

(C-21) becomes, trivially,

z, = A(wt)[[ - %wt Px]c. (C-31)

(C-22) becomes, using the case L=YL of the text,

Et YL (c-32)

_ _ 2tPYL _ 3,2
ZL = A(wt)[ m ].

The equations of Table I are obtained by substituting
for P, Q, X and Y.



APPENDIX D

Rendezvous Application

This appendix is a simple exercise to show the use
of the elemental trajectories in rendezvous calculations, in
particular, a Hohmann transfer from one circular orbit to
another. '

Local vertical coordinates are used. The target
spacecraft is the origin, at A. The active spacecraft, B,
lies initially on an orbit h meters below and y(0) meters
aft. This is a C-trajectory, and the initial velocity
(Table I) is 3wh/2.

X A

Y % . o y

The final position will be at A, the final velocity,
zZero.

The transfer orbit, astronomically the ellipse tan-
gent to both circular orbits, is a mixed C and E trajectory--
a drifting ellipse. Because the burns are in track, the
ellipse is tangent to the initial trajectory and to the y axis.
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Initial condition vectors C and E are as shown. C = (-h/2,y(0)).
E lies along the inward radius; from the figure on page 14,
E = —%?, 0) for an ellipse of minor axis, h.

3wh

In :the transfer orbit, the C drift velocity is 7

The transfer is accomplished in wt=17, so y(0)-37h/4 and C for
the transfer trajectory is

C = (-h/2,-3 7 h/4).
(The period of the transfer orbit is, precisely,
somewhat shorter than that of the reference orbit. The error

introduced using wt = 7 is of order |V|/|D|, that of the
expansions in general.)

The results then follow:

A

23

lt—— = —

(1) The elevation angle at time of the first burn is

tan"* 43, = 230,
37

(2) The velocity prior to burn is 3wh/2. After burn, it is

Vp + V= wd|E|/3 + V, = wh + 3wh/4 = Tuh/4.

.« the burn magnitude is wh/4.

(3) At rendezvous, wt = 7, velocity in transfer ellipse is

VE+VC=—wh+3h/4=—wh/4
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Since velocity is zero after the final burn

.+ the burn magnitude is also wh/4

(Raising an orbit h feet takes nearly the same AV at both
Earth and Moon.)

(4) The local vertical equation can be used to obtain’

v(t) = (_52ﬁ§4) + % wt (g)— %-(g) coswt + (g) sinwt

and the familiar result sketched.

Substituting wt = 7-6 and expanding

2
v(e) = % ( g ), a parabolic behavior for the last
few tenths of a radian prior to rendezvous.

(5 As a conceptual alternate, the vehicle could apply constant
track thrust, and follow the drag

trajectory and approach directly
from below. It can be shown

that the AV applied in track is the total Hohmann AV, wh/2.
The radial velocity must be put in and taken out again. It
is several times larger but decreases as the rendezvous is
slowed down.
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As another alternate, the co-periodic ellipse of minor
axis 2h can be used, and allows
approach directly from below.

y -

2uh - 3wh/2 = wh/2 (in track)

>
<
It

wh (radial only; track component

>
<
i

(7)

zZero) .

In this case the penalty above the Hohmann is 2X additional.

There clearly is a converse case to (6) where an approach
in track is made. This is enough to demonstrate that the

elemental trajectories are easy to use.



APPENDIX E

Estimates of Spacecraft Motions

This appendix briefly covers the effect of
spacecraft motions on the idealized picture of particle motion
in a spacecraft. The authors are indebted to several members
of the Skylab Systems Analysis Department at Bellcomm for
inputs, particularly, P. G. Smith and W. W. Hough.

W.W. Hough has written a good treatment of the
perturbations due to predictable vehicle dynamics, and gives(6)
estimates of the linear accelerations of the spacecraft
structure in the crew guarters. For instance, a Skylab
changing from inertial to local vertical attitude has an
angular velocity comparable with the orbital rate, w; in the
crew quarters, at a radius of approximately ten meters from
the center of gravity, this gives additional accelerations

of order lO_Gg, the same as gravity gradient. Attitude control
thrusters cause brief acceleration pulses, estimated as

2 x 10_3g. The Control Moment Gyro system operates over longer

times, and the effective acceleration levels in the crew
quarters are smaller, somewhat under 10—4g, maximum.

Clearly body-mounted objects will perceive accelera-
tions of this magnitude, more or less modified in accord with
the normal modes of vibration of the spacecraft and the
particular resonances of the attaching structure. If the
observer is fixed to the spacecraft, a free particle will show
corresponding, apparent accelerations.

The significance of these accelerations to experimental
design depends on disturbance size. Major maneuvers such as
orbit change or attitude change must be lived with. No "zero-G"
experiment can be performed during launch phase; the more sensi-
tive experiments must be restricted to times when the vehicle is
held stable.

With major maneuvers excluded, there is a motional
environment, comprising a vibration spectrum and certain low
frequency motions due to the attitude control cycle, astronaut
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motion, starting up of equipment, and so forth. If sensitive,
experiments must be isolated from this environment. Because
the motions are largely cyclic, and because total displace-
ments are small, the requirements on vibration isolators do
not appear severe.

The displacements may be estimated, and amount at
most to several centimeters. Vibrational amplitudes should
typically be well under a centimeter, even for low frequency
modes. Gross spacecraft motions may be rotational, or trans-
lational. If rotational, the displacement at a work position
is R6, R being the distance from the C.G. and 8 the angular
motion. Conventional thruster stabilization with, for instance,
a 5-degree deadband, is a major maneuver. The displacement at
a l0-meter radius is 1 meter. Half degree deadband is also
available on Apollo, and is more practical,with 10 cm displace-
ments at 10 meters and much smaller near the C.G. "Zero-G"
experiments on thruster controlled spacecraft are probably best
performed without attitude control, at rotational rates such that
centrifugal accelerations are small. (This option is not
necessarily available on multidisciplinary flights)

Control Moment Gyros as used on Skylab are specified
to maintain orientation within 4 to 10 arc minutes depending on
axis. Nominal performance should be measured in arc seconds.

- P. G, Smith calculated for us the angular displacement resulting
as an astronaut jumped from one side of the Skylab to the other.
This is a moderate leap, taking 9.5 seconds to cross the 22-foot
(vr7m) diameter. The maximum deviation of the Skylab was
estimated to be 80 arc seconds. This would correspond at

R = 10m to a 4mm displacement.

Translation disturbances are easy to estimate. The
system C.G. is invariant. When the astronaut of mass m moves
S meters, the station of mass M must move -{(m/M)S meters to
compensate. If the astronaut weighs 100Kg and the station

105Kg, m/M is .001. Therefore, when the astronaut moves 22
feet (7m) the station must react, moving 7mm. Since the length
of Skylab-CSM habitable area approaches 20m, maximum displace-
ments of several centimeters are possible. It should, of
course, be possible to reduce crew activities during critical
experiments. '

Tentative conclusions as regards observations of
particle motion and zero-G experiment design are as follows
(these are drawn only from the effect of spacecraft and crew
disturbances) :



(1)

(2)

(3)

(4)

(5)
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Major maneuvers must be treated separately. The
subsatellite will appear to change its orbit; the
experiment will not be scheduled, and the appara-
tus will be stowed or caged as appropriate.

Thruster control will be inappropriate for a class
of zero-G experiments. There will be
exceptions; it is plausible that an environment

involving infrequent pulses of 10_39 is acceptable,
at least for exploratory studies.

C.M.G. attitude control is preferred. Also, the accel-
eration environment in a slow roll may be acceptable.

Vibration isolation is required for zero-G experiments.
The suspension system should be soft, that is, apply
restoring accelerations weakly dependent on displace-
ment. Given C.M.G.'s, a working distance of several
centimeters should adequately isolate the experimental
apparatus from most spacecraft disturbances.

Observations of particle motion will contain noise
due to spacecraft disturbances. With C.M.G.'s,
displacements from the nominal path should rarely
exceed a centimeter.








